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crystallographic study by Matthews et al.8 of the ternary 
complex that Lactobacillus casei dihydrofolate reductase 
(DHFR) forms with NADPH and methotrexate (MTX) in­
dicates that the tetrahydrofolic acid produced by DHFR would 
have the unnatural R configuration at C-6, if dihydrofolic acid 
(DHF) binds to the enzyme in the same orientation found for 
MTX. However, these authors have suggested that MTX and 
DHF might bind to the enzyme in different orientations, with 
the pteridine rings rotated 180° relative to each other; this 
alternative orientation would lead to the 5 configuration at 
atom C-6 of THF, as required by our results. 
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PentacarbonyKT-T/'-cycloheptatrienylJrhenium. 
Synthesis and Fluxional Behavior of a 
MonoAapfocycloheptatrienyI Derivative 
of a Transition Metal 

Sir: 

Although the TI3, r?5, and T]1 bonding modes of the cyclo-
heptatrienyl ligand are well established, no monohapto-1-
cycloheptatrienyl derivative of a transition metal is known.1 

The lack of such compounds is noteworthy, since they would 

Re(CO)5 

Figure 1.400-MHz1H NMR spectrum of (7-7/'-C7H7)Re(CO)5 (2) in 
methylcyclohexane-di4 at 30 0C. Scale is in parts per million from Me4Si 
= 0. Precise chemical shifts and assignments are given in note 7. Irradiation 
at 5 3.16 ppm causes an intensity decrease in the signal at <5 5.44 ppm. 

provide the simplest cyclic system in which a 1,5 sigmatropic 
shift (as expected from orbital symmetry rules2 for "ordinary" 
migrating groups) could be distinguished from the 1,2 (least 
motion) pathway. For the intensively studied 77'-CsH5 deriv­
atives,3 these pathways are of course not distinguishable. We 
now report the synthesis of (7-71'-CiHi)Re(CO)S, the first 
wono/!a/;/o-7-cycloheptatrienyl derivative of a transition 
metal, and a study of its fluxional character which establishes 
a 1,2 shift as the only observable migration pathway. 

The title compound has been prepared in two ways. In the 
first (eq 1), addition of 7-cycloheptatrienylacyl chloride4 to 

THF 
C 7 H 7 - C - C l + Na R e ( C O ) 5 20 = 

THF 

->- C 7 H 7 - C - R e ( C O ) 5 (1) 

1 

hv 1 a c e t o n e , -7E 

C - H n
+ B F , + Na+Re(CO) 

7 7 4 5 -78° *-rt 3 \ - = / 
R e ( C O ) 5 ( 2 ) 

a tetrahydrofuran (THF) solution OfNa + Re(CO) 5
- affords 

the acyl I.5 Decarbonylation of 1 under ultraviolet light6 af­
fords the 7-r/'-cycloheptatrienyl derivative 2 as orange, air-
stable needles.7,8 In the second method (eq 2) reaction of tro-
pylium cation with Na + Re(CO) 5

- affords 2 in 90% yield; this 
facile reaction is surprising in view of earlier reports of carbonyl 
anion-tropylium cation reactions in which metal carbonyl 
dimers and ditropyl are formed,10 or one instance where a 
trihapto derivative was formed in low yield.u We attribute the 
difference to the strength of rhenium-carbon bonds.12 

The fluxional behavior of 2 was studied using the spin sat­
uration transfer technique13 in dioxane-^-14 Irradiation of H7 
(see Figure 1) in the 25-37° range caused the Hi,6 resonance 
to decrease in intensity15 while the other olefinic resonances 
were unaffected. This result is a clear, qualitative indication 
that H7 is exchanging with Hi16 but not with H2,5 or H3,4, i.e., 
that a 1,2 shift is taking place.16 Quantitative results are 
summarized in Table I, from which activation parameters17 

for the 1,2 shift in 2 are as follows: AG*300 = 19.8 ± 0.1 kcal 
mo! - 1 , AH* = 18.1 ± 1.9 kcal mol - 1 , AS* = -5 .7 ± 2 
eu.18 

It is of interest to compare the 1,2 or least motion shift es­
tablished here for 2 with the 1,5 shift observed19 and recently 
confirmed20 in (7V-C 7 H 7 )Sn (QH 5 H (3), for which AG*300 

= 15.44 ± 0.14 kcal mol - 1 .2 0 Migration in the tin derivative 
conforms to the ordinary symmetry rules, while in the transi­
tion metal derivative it does not. It has occasionally been 
suggested20'2' that orbital symmetry restrictions might be 
relaxed when the migrating group possesses valence-shell d 
orbitais; the present case provides the first test of this possi-
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Table I. Spin Saturation Transfer Data for 2" 

T, K 

298 
301 
304 
307 
310 

T 1 OfWu* 

6.47 
6.87 
7.27 
7.67 
8.07 

M , (0) - Mz(Co)' 

Mz(=°) 

0.11 
0.19 
0.23 
0.38 
0.47 

k X 102, s - ' d 

1.70 
2.77 
3.16 
4.95 
5.83 

" In dioxane-^s solvent. * Measured using a it, T, 7r/2, 5Ti se­
quence. < M7(O) is the normal equilibrium magnetization of Hi,6 and 
M',(<=) is the equilibrium magnetization of Hi,6 with saturation of H7. 
'' The rate constant, k, for exchange in a two-site equal population 
system is given by k = l/T1(i,6)[(A/z(0) - MZ(»)/A/Z(°=)].23 The 
two-site treatment is adequate since the rate of 1,3 and 1,4 shifts is 
zero in the temperature range studied. 

bility. The result demonstrates for the first time a clear dif­
ference between main and transition group systematics, posing 
an interesting problem for the theory of sigmatropic shifts. 

Two conformations are possible for 2, which may have the 
Re(CO)S moiety in a quasi-axial (2a) or quasi-equatorial (2b) 

(OC), 

<w^ 
Re(CO), 

2a 2b 

position. The observed H1-H7 coupling constant in 2 is 8.7 Hz, 
similar to the value of 8 Hz observed for the triphenyltin de­
rivative 3;20 3 has been shown by X-ray crystallography to have 
the substituent in the quasi-axial position.22 If it is the case that 
2a is the predominant or only conformer present in solutions 
of 2, there should be no geometric constraint on a 1,5 shift, and 
the different migration pathways of the rhenium and tin 
compounds must be otherwise explained. 

We are continuing this investigation on the assumption that 
other stable wo«o/!a/)?o-7-cycloheptatrienyl derivatives of 
transition metals can be synthesized and that their study will 
contribute to the understanding of fluxional processes in or-
ganometallic chemistry. 
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A New, Stereocontrolled Synthesis of 
c/s,anfi,c/s-Tricyclo[6.3.0.02'6]undecanes. 
Total Synthesis of (±)-Hirsutene 

Sir: 

The m,a«//,m-tricyclo[6.3.0.02'6]undecane system is found 
in the carbon skeleton of the hirsutane group of sesquiterpenes, 
as for example, hirsutic acid1 (1), coriolin2 (2), and their 
biogenetic precursor, hirsutene3 (3). These substances are 

OH 

HOiC-

known to be endowed with remarkable biological properties 
and have been the subject of intense synthetic investigation, 
recently culminating in the description of the biogenetic-like 
synthesis of hirsutene4 and a stereocontrolled synthesis of 
hirsutic acid.5 

We report herein a new stereocontrolled synthesis of hir­
sutene and the chemical precursors of coriolin and thus record 
a general method of entry into the cis,anti,cis-tricy-
clo[6.3.0.02'6]undecane series. The key step in this approach 
is a unique skeletal rearrangement of a tricyclic 6-4-5-fused 
ring to a cis,anti,cis-tricyclic 5-5-5-fused ring. The cis,syn,-
cis-tricyclic series, the stereochemistry of which is incompatible 
with that of the hirsutane skeleton, have been synthesized by 
photocycloaddition.6 
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